Fecha de la ultima revisión
## [1] "2023-07-10"
library(ggplot2)
library(Hmisc)
library(gridExtra) # Un paquete para organizar las figuras de ggplot2
library(gt)
library(tidyverse)
Las medidas o indices de dispersión, son indicadores de cuan variable los datos son uno del otro. Si todos los valores tienen el mismo valor no hay dispersión. Hay múltiples indices de dispersión vamos a evaluar solamente algunos de estos indices, para más información pueden ir al siguiente enlace https://en.wikipedia.org/wiki/Statistical_dispersion.
Los indices que estaremos estudiando son los siguientes
Primero miramos un gráfico donde tenemos datos donde el promedio es igual pero la dispersiones son diferentes. Lo que uno observa es que en la distribución azul los datos son más similares uno al otro y la distribución roja los valores son más diferentes. En el primer conjunto de datos se usa 500 valores con un promedio de 100 y una desviación estándar de 10, en el segundo se produce un conjunto de datos de 500 valores con un promedio de 100 y una desviación estándar de 30.
set.seed(8690) # esto es para que los valores se queda igual a cada vez que se corre el analisis
a=rnorm(5000, 100, 10) # la función para generar datos al azar con una distribución normal
dfa=data.frame(a)
dfa
a |
---|
122 |
96.3 |
97.6 |
104 |
87.9 |
96 |
95.3 |
93.1 |
120 |
111 |
107 |
125 |
93.9 |
109 |
94.6 |
93.4 |
104 |
99.8 |
116 |
101 |
110 |
101 |
109 |
105 |
79.6 |
91.7 |
97.7 |
89.5 |
105 |
93.6 |
90.4 |
107 |
77.4 |
98.7 |
108 |
106 |
96.7 |
98.5 |
105 |
98.7 |
102 |
101 |
91 |
88.9 |
83.7 |
100 |
108 |
101 |
90.4 |
102 |
101 |
109 |
108 |
101 |
91.7 |
86.7 |
101 |
85.8 |
109 |
83.4 |
98.5 |
108 |
89.3 |
104 |
98.3 |
98.6 |
106 |
98.8 |
96.4 |
92.8 |
91 |
99.4 |
109 |
107 |
98.9 |
113 |
107 |
90.7 |
110 |
117 |
89.8 |
93.8 |
102 |
114 |
90.3 |
104 |
88.9 |
107 |
113 |
110 |
119 |
112 |
110 |
98.2 |
94.8 |
101 |
99.4 |
109 |
105 |
96.4 |
83.9 |
93.9 |
96.6 |
119 |
91.5 |
101 |
119 |
88.4 |
95.3 |
89.3 |
99.4 |
93.8 |
120 |
90.4 |
96.6 |
116 |
109 |
104 |
104 |
109 |
84.3 |
97.6 |
98.6 |
87.3 |
104 |
108 |
89.4 |
99.6 |
95.4 |
119 |
102 |
96.9 |
94.1 |
108 |
109 |
102 |
87.3 |
101 |
105 |
113 |
108 |
85.5 |
114 |
118 |
104 |
88.9 |
118 |
97.5 |
92.6 |
86.5 |
95.5 |
99.2 |
99.2 |
84.1 |
93.4 |
106 |
96.4 |
105 |
94.5 |
95.7 |
99.1 |
82.6 |
92.3 |
97 |
105 |
88.6 |
114 |
87.7 |
115 |
90.5 |
95.5 |
102 |
102 |
89.8 |
96.6 |
93.3 |
97.1 |
123 |
81.1 |
94.6 |
87.6 |
109 |
83 |
75.8 |
77.2 |
99.1 |
117 |
97.4 |
102 |
96.8 |
103 |
120 |
98.3 |
101 |
118 |
109 |
93 |
102 |
108 |
103 |
106 |
110 |
107 |
109 |
95.8 |
94.4 |
93.1 |
103 |
112 |
93 |
96.5 |
111 |
106 |
107 |
103 |
101 |
76.1 |
111 |
105 |
105 |
107 |
100 |
109 |
93.1 |
110 |
104 |
116 |
99 |
98 |
99.4 |
104 |
96.5 |
100 |
106 |
90.3 |
98.2 |
95.3 |
93.1 |
102 |
116 |
97.1 |
89.9 |
95.6 |
84.1 |
106 |
105 |
85.9 |
104 |
108 |
102 |
84.8 |
111 |
88.2 |
121 |
87.9 |
95.6 |
99.8 |
87 |
93.5 |
104 |
88.3 |
91.3 |
113 |
102 |
114 |
95.7 |
97.2 |
92.2 |
102 |
83.2 |
114 |
107 |
96 |
100 |
93.2 |
113 |
107 |
90.4 |
104 |
92.5 |
96.5 |
107 |
103 |
98.5 |
106 |
96.8 |
109 |
108 |
100 |
104 |
78.2 |
120 |
103 |
98.7 |
91.8 |
97.1 |
98.4 |
100 |
96.3 |
117 |
122 |
104 |
102 |
98.8 |
117 |
117 |
90.5 |
84.5 |
94.1 |
97.4 |
103 |
102 |
119 |
88.3 |
106 |
114 |
119 |
104 |
100 |
113 |
97.3 |
105 |
91.5 |
104 |
95.3 |
106 |
95.6 |
101 |
104 |
103 |
111 |
94.1 |
101 |
98.5 |
100 |
101 |
96.9 |
119 |
103 |
102 |
98.8 |
106 |
102 |
90.8 |
95.8 |
116 |
102 |
101 |
114 |
109 |
94.3 |
121 |
110 |
89.9 |
83.5 |
106 |
96.4 |
104 |
114 |
121 |
107 |
103 |
87.4 |
78.8 |
97 |
84.4 |
104 |
107 |
103 |
105 |
97.2 |
99.7 |
102 |
84.1 |
105 |
109 |
100 |
97.6 |
101 |
97.9 |
92.9 |
90.6 |
99.9 |
98.3 |
81.4 |
102 |
105 |
93.9 |
89.8 |
96 |
97.8 |
88.1 |
97 |
112 |
87.4 |
82.2 |
107 |
117 |
95.8 |
101 |
93.3 |
102 |
97.3 |
105 |
88.5 |
108 |
99.9 |
104 |
106 |
98.3 |
95.3 |
92.2 |
99.9 |
85.4 |
96.3 |
90.9 |
110 |
115 |
117 |
102 |
83.4 |
75.4 |
103 |
102 |
110 |
114 |
101 |
95.4 |
95.9 |
95.4 |
94.1 |
102 |
105 |
99.4 |
115 |
85.8 |
106 |
91.6 |
104 |
95.8 |
106 |
90.6 |
92.8 |
112 |
100 |
107 |
95.7 |
97.2 |
117 |
98.9 |
94.1 |
91 |
120 |
94.8 |
104 |
109 |
115 |
105 |
101 |
89.7 |
75.9 |
106 |
97.7 |
98.2 |
81.1 |
110 |
97.4 |
105 |
114 |
102 |
85.5 |
100 |
103 |
102 |
90.2 |
103 |
102 |
75.9 |
96.7 |
119 |
110 |
88.6 |
107 |
118 |
107 |
103 |
102 |
73 |
109 |
92.1 |
89.7 |
106 |
96.1 |
103 |
107 |
106 |
94.7 |
96.3 |
85.9 |
104 |
93.5 |
94 |
113 |
108 |
94.5 |
96.8 |
105 |
115 |
100 |
83.6 |
102 |
89 |
96.6 |
101 |
116 |
104 |
94.2 |
106 |
105 |
99.2 |
89 |
90.9 |
106 |
106 |
98.7 |
116 |
107 |
89.2 |
106 |
97.8 |
107 |
90.3 |
92.8 |
78.9 |
99.8 |
111 |
97.8 |
84.2 |
116 |
114 |
94.7 |
91.8 |
89.7 |
98.5 |
80.6 |
88.7 |
98.1 |
94.3 |
105 |
116 |
101 |
107 |
79.8 |
104 |
71.4 |
91.3 |
105 |
106 |
112 |
110 |
97.4 |
92.6 |
92.8 |
88.9 |
112 |
111 |
79.7 |
89.6 |
104 |
99.8 |
102 |
81 |
105 |
87.1 |
106 |
97.3 |
112 |
98.8 |
106 |
94.4 |
97.3 |
104 |
94.3 |
105 |
101 |
104 |
87.7 |
106 |
79.9 |
112 |
101 |
100 |
101 |
98.5 |
83.5 |
97.2 |
100 |
96 |
82.1 |
97.3 |
103 |
112 |
121 |
96.8 |
93.5 |
91.6 |
104 |
102 |
84.4 |
105 |
103 |
94.6 |
119 |
92.1 |
94.8 |
91.2 |
99 |
105 |
112 |
116 |
92.1 |
97.2 |
104 |
97.8 |
119 |
93.7 |
75.6 |
87 |
108 |
98 |
98.9 |
105 |
110 |
95.8 |
83.6 |
88.1 |
105 |
92.8 |
95.5 |
100 |
95.3 |
94.8 |
133 |
109 |
95.8 |
122 |
93.8 |
103 |
101 |
89 |
91 |
112 |
97.1 |
81.9 |
98.3 |
93.1 |
115 |
101 |
101 |
112 |
112 |
81.6 |
101 |
102 |
96 |
93 |
107 |
117 |
95.9 |
97.5 |
96.4 |
82.8 |
99.2 |
89.3 |
82.4 |
110 |
95.3 |
77.8 |
97.4 |
92.6 |
99.6 |
86.4 |
90.2 |
106 |
115 |
103 |
88.9 |
96.2 |
97.4 |
96 |
101 |
85.4 |
126 |
99.4 |
82.1 |
107 |
91.2 |
104 |
103 |
91.4 |
90.7 |
115 |
102 |
94.9 |
96.1 |
92.1 |
116 |
85.7 |
97.1 |
104 |
84.1 |
76.6 |
121 |
99.3 |
101 |
102 |
107 |
100 |
99.1 |
82.7 |
103 |
80.7 |
113 |
88.6 |
111 |
122 |
89 |
99.1 |
97.1 |
115 |
107 |
97.8 |
108 |
112 |
83.8 |
110 |
105 |
100 |
109 |
98.7 |
90.6 |
96 |
89.6 |
106 |
109 |
80.2 |
85.4 |
110 |
100 |
93.9 |
93.3 |
115 |
110 |
105 |
84.7 |
108 |
81 |
104 |
119 |
98.1 |
86.4 |
96.7 |
117 |
114 |
89.8 |
92 |
86.7 |
102 |
95.5 |
91.6 |
102 |
110 |
106 |
77.7 |
97.1 |
106 |
88 |
100 |
108 |
108 |
115 |
110 |
111 |
83.9 |
105 |
106 |
111 |
104 |
96.1 |
90.8 |
101 |
93.8 |
107 |
89.5 |
87.5 |
92 |
95.9 |
106 |
112 |
89.6 |
115 |
95.5 |
103 |
104 |
103 |
89.4 |
103 |
83.4 |
113 |
88 |
90.3 |
99.7 |
94.3 |
90.5 |
88 |
107 |
103 |
109 |
104 |
96.9 |
84.4 |
109 |
109 |
106 |
103 |
119 |
89.8 |
89.1 |
104 |
91.6 |
99.6 |
100 |
96.7 |
88.7 |
98.8 |
101 |
98 |
94.8 |
117 |
108 |
110 |
105 |
102 |
100 |
97.7 |
102 |
93.4 |
76.2 |
98.4 |
105 |
103 |
100 |
113 |
92.6 |
109 |
109 |
117 |
103 |
104 |
105 |
105 |
78.9 |
95.5 |
92.6 |
104 |
106 |
118 |
97.2 |
86.3 |
114 |
98.3 |
101 |
98.9 |
104 |
91.6 |
92.2 |
89.4 |
109 |
86.8 |
110 |
123 |
118 |
92.8 |
103 |
98.1 |
91.2 |
98 |
98.9 |
99.3 |
104 |
88.6 |
100 |
100 |
95.7 |
99.2 |
110 |
112 |
113 |
122 |
92.2 |
112 |
98.3 |
87.2 |
99.6 |
105 |
96.7 |
83.4 |
111 |
115 |
79.6 |
105 |
87.2 |
101 |
95.2 |
101 |
101 |
100 |
97 |
108 |
110 |
101 |
102 |
110 |
86.6 |
101 |
115 |
95.8 |
101 |
81.9 |
105 |
87.5 |
110 |
109 |
88.1 |
114 |
103 |
91.4 |
90.3 |
103 |
101 |
102 |
116 |
104 |
95.8 |
100 |
98.6 |
103 |
83 |
106 |
109 |
98.5 |
88 |
108 |
108 |
116 |
109 |
105 |
98.5 |
99.1 |
120 |
87.5 |
84.2 |
117 |
117 |
108 |
98.7 |
99 |
103 |
113 |
83.2 |
120 |
99 |
95.3 |
98.4 |
103 |
87.1 |
93 |
91.6 |
95.2 |
97.6 |
101 |
106 |
118 |
88.6 |
96.4 |
103 |
123 |
101 |
88.2 |
105 |
84.3 |
84.9 |
97.3 |
84.2 |
102 |
73.8 |
102 |
108 |
115 |
96.9 |
115 |
119 |
106 |
92.3 |
96.3 |
89.3 |
104 |
117 |
88.5 |
89.7 |
105 |
111 |
89.9 |
103 |
103 |
86.1 |
101 |
103 |
75.7 |
102 |
86.1 |
109 |
100 |
109 |
108 |
98.1 |
104 |
102 |
115 |
102 |
97.1 |
102 |
113 |
102 |
96.9 |
94.5 |
87.4 |
90.7 |
102 |
84.2 |
78.8 |
110 |
101 |
87.8 |
110 |
103 |
112 |
102 |
105 |
106 |
73.5 |
93.7 |
103 |
83.2 |
105 |
92.8 |
110 |
102 |
110 |
94.9 |
92 |
97.5 |
89 |
95.5 |
108 |
111 |
93 |
111 |
87.8 |
100 |
103 |
74.6 |
81.1 |
105 |
110 |
110 |
110 |
104 |
83.5 |
112 |
113 |
123 |
96.4 |
107 |
108 |
105 |
102 |
92.7 |
81.2 |
106 |
90.4 |
79.4 |
110 |
114 |
109 |
92.3 |
87.9 |
112 |
102 |
94 |
99.3 |
109 |
100 |
109 |
87.3 |
101 |
119 |
104 |
93 |
94.7 |
110 |
89.4 |
97.8 |
105 |
99.1 |
92.5 |
116 |
105 |
100 |
98.1 |
94.5 |
97.7 |
114 |
90.4 |
93.8 |
114 |
109 |
115 |
93.9 |
103 |
106 |
111 |
99 |
112 |
109 |
104 |
102 |
97.8 |
97.6 |
103 |
94.2 |
111 |
79.7 |
98.7 |
108 |
98.4 |
97.9 |
105 |
96.2 |
114 |
107 |
73.6 |
100 |
112 |
88.2 |
101 |
122 |
99.1 |
85.2 |
89.3 |
98.3 |
93.3 |
82.8 |
98.1 |
97.1 |
81.7 |
93.4 |
110 |
108 |
96.2 |
108 |
108 |
109 |
82.7 |
95.3 |
97.6 |
95.8 |
96.8 |
109 |
104 |
116 |
85.1 |
94.5 |
104 |
111 |
117 |
129 |
89.8 |
116 |
94.6 |
79.6 |
110 |
83.5 |
74.7 |
98 |
85.4 |
72.6 |
94.1 |
81.6 |
96.3 |
114 |
87.7 |
100 |
102 |
85.8 |
107 |
89.5 |
105 |
98.4 |
94.8 |
118 |
96.2 |
92.7 |
85 |
95.7 |
94.9 |
98.9 |
121 |
99 |
88.3 |
102 |
93.7 |
103 |
96.5 |
94.2 |
98.5 |
108 |
96.8 |
119 |
106 |
93 |
118 |
117 |
93.4 |
98.4 |
97 |
105 |
97.4 |
101 |
75.6 |
81.2 |
106 |
93 |
97.9 |
101 |
99.8 |
98.3 |
83.3 |
103 |
88.7 |
124 |
112 |
100 |
86.3 |
92.9 |
96.2 |
108 |
79.9 |
116 |
116 |
90.4 |
94.9 |
98.1 |
103 |
94.8 |
102 |
88.3 |
96.8 |
91.1 |
104 |
82.5 |
110 |
99.8 |
111 |
93.8 |
106 |
86.1 |
97.7 |
82.7 |
99.9 |
85.3 |
95.6 |
101 |
111 |
79.1 |
100 |
89.4 |
91.4 |
120 |
97.9 |
106 |
99.5 |
103 |
103 |
102 |
102 |
101 |
101 |
105 |
99.3 |
105 |
97.5 |
86.3 |
97.9 |
89.6 |
108 |
114 |
86.1 |
87.8 |
94.9 |
89.2 |
125 |
95.9 |
103 |
109 |
125 |
100 |
94.7 |
94.7 |
81.6 |
101 |
112 |
109 |
104 |
106 |
102 |
102 |
106 |
78 |
120 |
112 |
106 |
100 |
101 |
108 |
94.4 |
110 |
113 |
94.2 |
98.2 |
103 |
106 |
99.8 |
99.8 |
115 |
88.5 |
106 |
98.5 |
115 |
107 |
117 |
90.3 |
112 |
107 |
81.2 |
111 |
97.9 |
105 |
103 |
93 |
105 |
106 |
86.2 |
105 |
102 |
81 |
97.8 |
99.7 |
106 |
104 |
90.4 |
113 |
109 |
74.6 |
110 |
99.5 |
91.2 |
105 |
91.8 |
100 |
87.8 |
99.6 |
120 |
100 |
111 |
94.9 |
84.7 |
102 |
88.7 |
106 |
103 |
105 |
94.8 |
93.6 |
108 |
98.7 |
110 |
95.7 |
110 |
98 |
96.9 |
86.9 |
90.5 |
106 |
88.7 |
108 |
108 |
91.3 |
83 |
101 |
101 |
103 |
97.8 |
108 |
99.7 |
101 |
104 |
96 |
105 |
90 |
94.8 |
95.9 |
105 |
98.4 |
102 |
115 |
104 |
93.8 |
95.1 |
87.5 |
93.9 |
82.5 |
99.6 |
104 |
93.3 |
121 |
104 |
105 |
108 |
94.6 |
105 |
101 |
88.2 |
91.7 |
103 |
92.5 |
104 |
102 |
103 |
104 |
99.2 |
93.4 |
100 |
92.1 |
125 |
107 |
109 |
97.8 |
103 |
104 |
111 |
111 |
101 |
96.8 |
99.6 |
73.9 |
86.3 |
95 |
118 |
108 |
105 |
99.2 |
102 |
112 |
86 |
103 |
105 |
98.6 |
100 |
97.9 |
98.4 |
101 |
82.5 |
100 |
110 |
93.1 |
89.6 |
95.2 |
126 |
107 |
92.1 |
101 |
105 |
90.4 |
88.4 |
124 |
107 |
110 |
89.2 |
96.8 |
101 |
90.6 |
95.9 |
112 |
96.3 |
102 |
104 |
96.6 |
88.6 |
87.3 |
99.1 |
104 |
89.4 |
86.1 |
110 |
81.2 |
98.1 |
93.2 |
84 |
111 |
111 |
125 |
87.6 |
89.9 |
103 |
98.8 |
94.7 |
86.7 |
107 |
116 |
87.5 |
102 |
115 |
96.9 |
109 |
102 |
104 |
96.2 |
98.5 |
85.7 |
121 |
108 |
104 |
87.1 |
101 |
99.8 |
88 |
107 |
112 |
115 |
84.6 |
106 |
97.4 |
109 |
77.1 |
90.4 |
92.1 |
89.9 |
89.4 |
104 |
88.9 |
99 |
95.6 |
95.7 |
89.6 |
105 |
83.9 |
93.8 |
94.7 |
97 |
87.4 |
86.9 |
103 |
100 |
113 |
87.6 |
113 |
111 |
84.8 |
90.1 |
87.4 |
112 |
96.2 |
104 |
120 |
90.7 |
96.6 |
109 |
96.5 |
95.6 |
111 |
116 |
86.3 |
108 |
85.8 |
100 |
97.6 |
107 |
104 |
101 |
113 |
93.5 |
94.1 |
98.2 |
82.3 |
90.1 |
105 |
126 |
104 |
98.4 |
91.5 |
99.8 |
85.7 |
96.4 |
101 |
90.4 |
101 |
104 |
89.6 |
90.6 |
100 |
95.3 |
92.2 |
86.4 |
80 |
88.9 |
112 |
105 |
94.8 |
88.2 |
74.5 |
99 |
93 |
93.1 |
93.2 |
81.1 |
107 |
111 |
84 |
109 |
91.1 |
93 |
108 |
93.7 |
85.9 |
101 |
78.6 |
116 |
91.7 |
84.1 |
88.8 |
109 |
108 |
79.1 |
111 |
92.6 |
95.4 |
95.8 |
87.6 |
101 |
96.7 |
99.7 |
118 |
95.8 |
96.1 |
85.5 |
109 |
93.1 |
93.7 |
103 |
96.2 |
96.1 |
101 |
104 |
112 |
97.3 |
113 |
116 |
113 |
98.9 |
115 |
113 |
103 |
102 |
106 |
109 |
103 |
114 |
116 |
106 |
89 |
94.3 |
104 |
81.3 |
86.4 |
103 |
80.2 |
112 |
110 |
87.6 |
100 |
97.6 |
99.2 |
95.2 |
104 |
86.8 |
102 |
85.9 |
108 |
90.9 |
97 |
103 |
89 |
110 |
106 |
84.9 |
99.1 |
114 |
113 |
85.9 |
86.5 |
97.3 |
89.6 |
104 |
113 |
105 |
93 |
108 |
123 |
97.9 |
90.8 |
110 |
102 |
88.8 |
116 |
92.9 |
93 |
94.9 |
97.2 |
93.5 |
82.9 |
92.9 |
104 |
108 |
94.2 |
104 |
90.1 |
122 |
90.6 |
98 |
104 |
113 |
88.1 |
87.9 |
99.8 |
99.1 |
108 |
110 |
90 |
67.8 |
103 |
111 |
103 |
108 |
108 |
106 |
104 |
102 |
109 |
74.3 |
84.2 |
93.4 |
108 |
116 |
86.3 |
121 |
124 |
103 |
95.2 |
115 |
96.7 |
107 |
113 |
100 |
102 |
101 |
112 |
90.3 |
112 |
114 |
113 |
108 |
98.8 |
90.7 |
102 |
114 |
93.6 |
95.6 |
99.7 |
89.6 |
112 |
107 |
99.7 |
101 |
76.6 |
100 |
93.2 |
94.5 |
88.6 |
93.5 |
87.2 |
95 |
101 |
109 |
96.9 |
89.8 |
97.4 |
102 |
128 |
97.4 |
88 |
113 |
109 |
82.8 |
105 |
87.5 |
78.3 |
113 |
109 |
100 |
115 |
86.4 |
109 |
89.8 |
82.4 |
93.5 |
109 |
97.9 |
101 |
105 |
92.9 |
94.5 |
93.9 |
71.4 |
99 |
115 |
92.1 |
106 |
92.4 |
102 |
90.5 |
88.7 |
96.9 |
101 |
97.9 |
105 |
95.4 |
104 |
97.6 |
111 |
113 |
99.3 |
107 |
102 |
91.9 |
92.1 |
96.5 |
96.2 |
88.6 |
102 |
117 |
108 |
87.3 |
95.7 |
98.1 |
110 |
99.8 |
110 |
113 |
94.5 |
95.4 |
99.1 |
103 |
93 |
115 |
98.2 |
100 |
112 |
105 |
97.1 |
102 |
98.7 |
110 |
105 |
84.5 |
92 |
80.1 |
116 |
106 |
100 |
90.8 |
98.8 |
103 |
110 |
93.8 |
92.9 |
101 |
95.7 |
80.5 |
109 |
105 |
131 |
93.5 |
99.5 |
120 |
97 |
95.1 |
110 |
115 |
111 |
104 |
98.5 |
114 |
114 |
101 |
104 |
106 |
93 |
101 |
105 |
97.8 |
93.5 |
92 |
85.3 |
77.6 |
116 |
93.2 |
91.8 |
92.8 |
80.9 |
102 |
95.9 |
89.4 |
90.9 |
103 |
106 |
119 |
114 |
81.5 |
110 |
95.6 |
105 |
99.3 |
88.9 |
109 |
98.9 |
94.4 |
88.5 |
89.8 |
108 |
89.5 |
96.1 |
95.1 |
77.1 |
104 |
103 |
97.7 |
110 |
121 |
105 |
94.6 |
117 |
109 |
93.3 |
106 |
96.5 |
104 |
117 |
96.4 |
96.3 |
108 |
90 |
96.4 |
111 |
108 |
112 |
107 |
121 |
97.1 |
97.1 |
86.9 |
89.6 |
95.1 |
108 |
105 |
83 |
104 |
95.2 |
107 |
106 |
113 |
89.2 |
94.9 |
103 |
110 |
102 |
90.5 |
119 |
110 |
85.7 |
106 |
106 |
107 |
111 |
83.4 |
107 |
97.6 |
90.6 |
99.9 |
86.9 |
111 |
102 |
99.1 |
87.4 |
95.2 |
86 |
111 |
97.2 |
95.6 |
112 |
99 |
94.9 |
108 |
87.9 |
99.5 |
102 |
113 |
95 |
105 |
89.2 |
85.7 |
76.2 |
82.1 |
118 |
117 |
95.8 |
89.7 |
95.6 |
107 |
104 |
87.5 |
87.9 |
106 |
109 |
101 |
93.3 |
97.4 |
101 |
110 |
103 |
95.1 |
105 |
85.5 |
90.7 |
95 |
103 |
90.8 |
94.7 |
98.9 |
96.4 |
111 |
81.5 |
114 |
89 |
89.2 |
108 |
97.2 |
134 |
93.5 |
102 |
98.6 |
99.9 |
107 |
98.5 |
96.2 |
102 |
114 |
110 |
106 |
82.7 |
92.7 |
85.6 |
115 |
104 |
109 |
85.4 |
94.8 |
108 |
103 |
106 |
115 |
89.5 |
117 |
92.9 |
103 |
95.3 |
113 |
94.3 |
108 |
92.9 |
92.4 |
92.5 |
100 |
111 |
108 |
115 |
103 |
91.4 |
103 |
103 |
112 |
93.8 |
101 |
110 |
109 |
106 |
84.9 |
111 |
116 |
96.2 |
92.4 |
102 |
112 |
106 |
100 |
96.8 |
101 |
106 |
111 |
106 |
84.9 |
87.7 |
122 |
95.1 |
101 |
110 |
116 |
109 |
98.4 |
103 |
92.7 |
119 |
105 |
97 |
91.5 |
86.5 |
116 |
95.7 |
96.4 |
102 |
96.4 |
119 |
110 |
93 |
83.5 |
93.9 |
102 |
107 |
93 |
92.7 |
119 |
100 |
85.8 |
99.5 |
98 |
93.5 |
93.5 |
89.2 |
103 |
109 |
96.1 |
112 |
95.1 |
79.6 |
91.4 |
94.6 |
113 |
101 |
91.8 |
90.3 |
107 |
84.4 |
104 |
102 |
99 |
95.6 |
101 |
97.9 |
113 |
104 |
108 |
97.7 |
108 |
90.9 |
94.6 |
99.3 |
113 |
82.9 |
110 |
92.6 |
102 |
91.2 |
107 |
88.2 |
108 |
97.6 |
108 |
101 |
104 |
116 |
107 |
93.5 |
116 |
111 |
92.5 |
95.4 |
102 |
82.3 |
99.9 |
100 |
103 |
85.2 |
96 |
108 |
90.2 |
87.5 |
91.8 |
106 |
98.1 |
101 |
92.5 |
113 |
116 |
96.3 |
117 |
104 |
91.9 |
93 |
102 |
100 |
106 |
95.1 |
111 |
113 |
106 |
109 |
112 |
99 |
92.4 |
102 |
94.8 |
83.8 |
111 |
91.8 |
106 |
104 |
90.2 |
92.1 |
100 |
121 |
102 |
111 |
115 |
97.2 |
90.4 |
103 |
86 |
89.9 |
96.6 |
86.1 |
93.6 |
109 |
107 |
99.8 |
102 |
96.9 |
103 |
92.8 |
109 |
111 |
84.1 |
92.2 |
105 |
100 |
108 |
90.6 |
100 |
109 |
90.6 |
99.4 |
93.3 |
97.8 |
97.4 |
95 |
116 |
102 |
107 |
109 |
103 |
104 |
98.3 |
100 |
100 |
108 |
116 |
107 |
110 |
91.2 |
85.2 |
104 |
102 |
92 |
91.4 |
98.3 |
100 |
123 |
88.3 |
109 |
93.6 |
101 |
114 |
108 |
99.6 |
83.5 |
90.3 |
128 |
117 |
95.9 |
100 |
82.5 |
98.9 |
95 |
113 |
94.1 |
102 |
102 |
86.1 |
87.1 |
114 |
105 |
100 |
93.9 |
97.1 |
114 |
92.5 |
106 |
119 |
90.1 |
111 |
102 |
94.9 |
85.5 |
90.5 |
114 |
105 |
100 |
91.6 |
94.7 |
106 |
95 |
85.9 |
107 |
107 |
86.9 |
108 |
109 |
82.2 |
90.8 |
107 |
101 |
101 |
94.4 |
92.9 |
113 |
120 |
89.4 |
97.9 |
116 |
92.4 |
111 |
85.1 |
99.2 |
120 |
87.5 |
102 |
103 |
94.3 |
81.4 |
77.9 |
84.2 |
113 |
89.5 |
98.7 |
131 |
92.3 |
103 |
106 |
98.9 |
97.5 |
88.9 |
97.5 |
120 |
95.1 |
84 |
94.8 |
99.6 |
109 |
101 |
98.3 |
99.8 |
95 |
95.1 |
79.2 |
100 |
110 |
105 |
86.9 |
92.8 |
108 |
108 |
96.5 |
110 |
80.8 |
94.6 |
97.6 |
94.8 |
101 |
97.4 |
113 |
114 |
104 |
106 |
99.4 |
106 |
82.4 |
99 |
86.7 |
112 |
100 |
86.7 |
116 |
103 |
87.3 |
111 |
111 |
112 |
112 |
89.6 |
100 |
97.3 |
104 |
91.8 |
92.5 |
115 |
98.9 |
110 |
95.6 |
103 |
88.9 |
97.2 |
118 |
103 |
99.7 |
109 |
94.7 |
94.7 |
105 |
99.6 |
109 |
101 |
107 |
103 |
106 |
85.9 |
82.7 |
94 |
88.3 |
108 |
109 |
116 |
93.1 |
86.9 |
82.6 |
103 |
100 |
123 |
96.9 |
96 |
114 |
119 |
86.6 |
94 |
100 |
102 |
86.5 |
80.3 |
91 |
85.5 |
96.1 |
85 |
124 |
94.3 |
99.9 |
95.1 |
99.1 |
104 |
78.9 |
116 |
96.7 |
85.3 |
94.9 |
102 |
112 |
92.6 |
101 |
89.8 |
106 |
104 |
104 |
96.2 |
88.3 |
93.6 |
90 |
109 |
110 |
91.7 |
112 |
105 |
87.3 |
83.7 |
87.1 |
111 |
113 |
104 |
101 |
106 |
102 |
103 |
98.1 |
95.4 |
88.2 |
87.5 |
114 |
108 |
108 |
106 |
98.9 |
94.7 |
77.6 |
115 |
98.3 |
104 |
94.7 |
113 |
101 |
104 |
103 |
96.7 |
103 |
97.3 |
104 |
103 |
92.8 |
131 |
97.4 |
100 |
93.1 |
109 |
114 |
107 |
79.6 |
112 |
106 |
78.1 |
88.3 |
97.5 |
93.4 |
79.2 |
122 |
93.2 |
93.5 |
99.6 |
96.3 |
84.2 |
98.6 |
92.8 |
100 |
123 |
93.7 |
101 |
84.7 |
95 |
99.8 |
91.2 |
89.7 |
106 |
100 |
83 |
101 |
86 |
87.2 |
110 |
106 |
88.9 |
122 |
103 |
92.1 |
110 |
101 |
98.5 |
98.3 |
119 |
96.1 |
113 |
96.8 |
86 |
113 |
110 |
103 |
119 |
103 |
77.8 |
105 |
98 |
93.2 |
112 |
97.2 |
112 |
91.9 |
104 |
73.5 |
106 |
98.2 |
96.1 |
73 |
107 |
94 |
97.2 |
84 |
131 |
105 |
109 |
94.8 |
91.1 |
99.8 |
97.1 |
108 |
95.7 |
86.5 |
112 |
111 |
104 |
94 |
95.6 |
81 |
80.8 |
101 |
100 |
99.2 |
102 |
98.2 |
111 |
113 |
102 |
99.2 |
87.8 |
106 |
93 |
99.5 |
108 |
108 |
97.3 |
102 |
108 |
97.1 |
99.4 |
117 |
115 |
82.6 |
107 |
96.1 |
100 |
91.1 |
85.6 |
99.9 |
112 |
94.3 |
93.3 |
116 |
97.2 |
94.3 |
99.2 |
90.9 |
93 |
88.6 |
101 |
111 |
101 |
110 |
89.4 |
100 |
126 |
102 |
85.3 |
91.2 |
95.9 |
109 |
114 |
93.7 |
105 |
102 |
84.4 |
101 |
101 |
96.7 |
106 |
88.8 |
93.7 |
107 |
99.7 |
109 |
91.9 |
94.7 |
90.3 |
97.7 |
106 |
90.7 |
108 |
84.9 |
102 |
106 |
101 |
98.3 |
94.8 |
95.9 |
101 |
110 |
89.5 |
107 |
116 |
91.5 |
104 |
97.1 |
88.5 |
86.7 |
90.7 |
90.3 |
85 |
102 |
112 |
103 |
108 |
112 |
87.8 |
98.3 |
99.2 |
97.5 |
100 |
98.9 |
97.7 |
104 |
86.6 |
107 |
104 |
104 |
101 |
102 |
94.6 |
117 |
95.2 |
118 |
101 |
100 |
101 |
105 |
93.2 |
105 |
95.6 |
88 |
102 |
106 |
125 |
86.9 |
102 |
116 |
102 |
99.4 |
89.2 |
91.3 |
92.6 |
91 |
90.7 |
114 |
84.9 |
100 |
98.4 |
89.4 |
88.6 |
93.1 |
107 |
101 |
110 |
100 |
104 |
100 |
97 |
80.4 |
93 |
99.4 |
92 |
105 |
110 |
98.6 |
100 |
107 |
92.3 |
86.6 |
90.9 |
114 |
102 |
103 |
111 |
101 |
105 |
90.2 |
130 |
110 |
97.9 |
104 |
94.1 |
84.2 |
98.8 |
115 |
111 |
102 |
105 |
87.8 |
94.7 |
112 |
104 |
98 |
107 |
89.5 |
95.4 |
99.4 |
109 |
85.2 |
105 |
91.2 |
91.1 |
110 |
81.2 |
91 |
90.1 |
99.9 |
111 |
103 |
94.1 |
100 |
80 |
81.9 |
101 |
93.2 |
109 |
112 |
98.1 |
103 |
117 |
80.8 |
102 |
89.9 |
90.4 |
91.5 |
105 |
100 |
97.1 |
103 |
94.3 |
107 |
101 |
109 |
95.3 |
88.6 |
95.1 |
92.3 |
97.3 |
117 |
101 |
103 |
89.6 |
96.9 |
99.1 |
87.9 |
104 |
112 |
85.4 |
83.7 |
122 |
106 |
100 |
113 |
109 |
87.9 |
100 |
96.6 |
111 |
92.8 |
84.9 |
82.7 |
124 |
112 |
85.5 |
99.3 |
103 |
98.7 |
95.1 |
116 |
100 |
98 |
112 |
102 |
95.6 |
114 |
98.4 |
99.5 |
101 |
100 |
101 |
108 |
102 |
104 |
87.5 |
87.6 |
94 |
107 |
105 |
105 |
99.8 |
85.9 |
101 |
107 |
113 |
93.7 |
103 |
109 |
96.2 |
86.6 |
83.6 |
99.8 |
98.9 |
108 |
93.4 |
109 |
119 |
102 |
97.1 |
92.7 |
100 |
98.4 |
97.8 |
97 |
99.6 |
106 |
111 |
101 |
91.8 |
87.9 |
93.2 |
96.1 |
93.2 |
95.8 |
84.2 |
96 |
90.4 |
69.5 |
70.1 |
92.9 |
101 |
90.3 |
89.5 |
102 |
94.2 |
93.2 |
113 |
104 |
110 |
108 |
105 |
85.6 |
83.2 |
95.4 |
91 |
112 |
107 |
101 |
75.1 |
98.8 |
99.8 |
101 |
95.4 |
116 |
102 |
74.8 |
94.5 |
128 |
95.4 |
112 |
104 |
89.8 |
103 |
105 |
98.5 |
93.9 |
96.7 |
114 |
97.8 |
117 |
101 |
91.3 |
91.8 |
102 |
97.8 |
107 |
99.3 |
104 |
106 |
98.7 |
94 |
106 |
95.4 |
99.3 |
101 |
113 |
86.5 |
107 |
110 |
89.1 |
102 |
111 |
104 |
110 |
105 |
104 |
97.6 |
106 |
116 |
79.3 |
97.1 |
95.3 |
98.2 |
78.9 |
91.2 |
101 |
91.8 |
111 |
106 |
97.2 |
101 |
110 |
98.2 |
93.8 |
86.1 |
118 |
91.9 |
101 |
116 |
109 |
89.2 |
91 |
92.3 |
89.4 |
88.1 |
102 |
107 |
105 |
108 |
110 |
86.6 |
83.5 |
97.2 |
98.7 |
119 |
104 |
100 |
108 |
93.6 |
106 |
99.5 |
91.2 |
94.7 |
117 |
108 |
93.4 |
111 |
96.7 |
97 |
102 |
112 |
99.4 |
112 |
89.4 |
113 |
104 |
102 |
99.6 |
95.8 |
120 |
116 |
102 |
107 |
118 |
98.6 |
116 |
101 |
112 |
89.3 |
96.5 |
103 |
89.8 |
109 |
95.5 |
98.1 |
108 |
85.8 |
94.9 |
92.2 |
103 |
97.5 |
113 |
86.1 |
93.6 |
102 |
99.7 |
98.7 |
106 |
93 |
89.8 |
94 |
96.2 |
94 |
98.3 |
100 |
105 |
98.9 |
107 |
110 |
95.9 |
96.6 |
102 |
98.9 |
93.3 |
85 |
99.4 |
88.1 |
105 |
111 |
100 |
107 |
98.4 |
92.2 |
114 |
96.9 |
84.8 |
90 |
103 |
91.8 |
81.3 |
113 |
120 |
85.1 |
90.5 |
101 |
96.1 |
99.6 |
102 |
87.6 |
112 |
90.6 |
112 |
94.2 |
105 |
112 |
104 |
90 |
82.8 |
97 |
105 |
105 |
122 |
88.8 |
106 |
97.1 |
94.5 |
120 |
96.6 |
100 |
98 |
101 |
86.5 |
95.3 |
108 |
80 |
107 |
109 |
106 |
109 |
107 |
113 |
94.4 |
113 |
95.4 |
107 |
100 |
79.8 |
110 |
107 |
124 |
96 |
121 |
75.7 |
112 |
110 |
111 |
107 |
95.9 |
105 |
97.3 |
99.1 |
124 |
104 |
118 |
96.7 |
104 |
87.9 |
95.9 |
92.4 |
120 |
95.4 |
104 |
100 |
112 |
89.2 |
101 |
99.3 |
101 |
95.3 |
99.4 |
95.6 |
93.7 |
104 |
93.4 |
106 |
95.8 |
105 |
119 |
107 |
95.7 |
92.8 |
114 |
95.6 |
91.2 |
86.5 |
103 |
106 |
99.2 |
99.2 |
104 |
103 |
102 |
98.1 |
94.5 |
96.4 |
101 |
108 |
111 |
96.7 |
89.3 |
89.6 |
118 |
95.1 |
105 |
100 |
92.4 |
104 |
94.2 |
103 |
94.8 |
78.9 |
102 |
100 |
86.9 |
102 |
104 |
106 |
106 |
97.2 |
86.5 |
104 |
93.4 |
110 |
86.2 |
98.2 |
114 |
79.5 |
109 |
118 |
105 |
99.4 |
123 |
116 |
96.9 |
88.4 |
90.4 |
87 |
108 |
107 |
106 |
99.6 |
93.6 |
90.1 |
110 |
87.5 |
122 |
93 |
100 |
87.3 |
84.6 |
93.6 |
91.5 |
103 |
99 |
91.2 |
107 |
86.4 |
94 |
95.8 |
89.5 |
125 |
127 |
116 |
95.6 |
88.5 |
105 |
97 |
100 |
106 |
96.1 |
99.3 |
97.5 |
95.5 |
91.1 |
93.5 |
103 |
95.9 |
99.1 |
97.9 |
98.9 |
89.6 |
92.4 |
121 |
105 |
105 |
91 |
102 |
97.5 |
101 |
88.5 |
103 |
92.1 |
93.5 |
100 |
107 |
80.6 |
92.7 |
91.9 |
87.6 |
107 |
112 |
115 |
103 |
98.3 |
95.4 |
82.5 |
90.6 |
95.7 |
100 |
104 |
107 |
92.7 |
95.8 |
96.3 |
89.5 |
108 |
104 |
91.6 |
108 |
93.1 |
103 |
91.2 |
99 |
104 |
82.6 |
98.5 |
93 |
110 |
97.7 |
98.8 |
98 |
114 |
101 |
104 |
102 |
94.9 |
96 |
121 |
88.6 |
101 |
122 |
96.7 |
91.7 |
120 |
112 |
98.2 |
111 |
86 |
103 |
93.9 |
94.7 |
93.6 |
96.4 |
97.2 |
98.8 |
102 |
107 |
101 |
98.4 |
96.3 |
106 |
108 |
96.3 |
76.9 |
93.7 |
94.7 |
103 |
94.4 |
87.9 |
92.5 |
109 |
96.7 |
125 |
106 |
84.4 |
70.1 |
97.8 |
97.3 |
102 |
89.1 |
103 |
102 |
102 |
103 |
96.5 |
93.9 |
101 |
87.9 |
105 |
77.8 |
100 |
97.8 |
78.6 |
98.4 |
102 |
92.1 |
86.9 |
113 |
99.7 |
102 |
89.6 |
94.2 |
114 |
114 |
114 |
76.6 |
111 |
76.7 |
102 |
110 |
97.8 |
103 |
99.8 |
119 |
110 |
84.9 |
102 |
95.1 |
102 |
105 |
100 |
107 |
91.8 |
110 |
96.4 |
117 |
86.1 |
92.8 |
113 |
90.3 |
98.7 |
91.2 |
97.6 |
92.3 |
103 |
92.3 |
88 |
98.4 |
103 |
101 |
97 |
103 |
106 |
90.3 |
98.3 |
101 |
89.6 |
116 |
108 |
102 |
89.5 |
101 |
105 |
92.5 |
99.7 |
110 |
98.8 |
106 |
89.4 |
106 |
95.9 |
100 |
100 |
106 |
120 |
102 |
94.2 |
102 |
98.6 |
120 |
86.7 |
122 |
108 |
109 |
109 |
101 |
83.4 |
102 |
85.4 |
94 |
95.2 |
105 |
88 |
90.1 |
103 |
106 |
112 |
95.5 |
117 |
110 |
91.2 |
98.7 |
103 |
85.6 |
103 |
101 |
104 |
90.1 |
107 |
101 |
84.9 |
104 |
83.5 |
98.5 |
118 |
119 |
95.4 |
77.1 |
116 |
95.8 |
81.2 |
91.9 |
102 |
87.7 |
110 |
107 |
89.8 |
98.8 |
108 |
114 |
101 |
96.2 |
94.2 |
93 |
93.7 |
109 |
82 |
109 |
116 |
104 |
87.1 |
92.4 |
87.1 |
74.3 |
111 |
114 |
102 |
120 |
99.8 |
100 |
107 |
96.5 |
119 |
88.7 |
109 |
102 |
107 |
97.4 |
80.5 |
96.7 |
104 |
96.1 |
95.8 |
108 |
108 |
104 |
91.5 |
102 |
115 |
109 |
134 |
93.6 |
111 |
98.2 |
81.5 |
114 |
102 |
92.2 |
87.8 |
94.2 |
108 |
107 |
103 |
98.7 |
91.9 |
98.7 |
103 |
106 |
95 |
112 |
98.4 |
89.1 |
81.2 |
102 |
91.4 |
96.7 |
96.4 |
87.3 |
94.5 |
111 |
97.1 |
93.9 |
107 |
102 |
102 |
90.2 |
90.2 |
90.9 |
105 |
112 |
99.6 |
103 |
106 |
83.5 |
98.4 |
123 |
104 |
85.5 |
119 |
117 |
89.5 |
92.4 |
91.6 |
107 |
95.5 |
106 |
112 |
92.4 |
103 |
88.1 |
91.5 |
76.8 |
88.5 |
101 |
112 |
110 |
99.1 |
93.8 |
103 |
95 |
109 |
103 |
113 |
103 |
96.9 |
92.6 |
108 |
94.3 |
106 |
95.8 |
104 |
88.9 |
124 |
90.2 |
104 |
92.7 |
103 |
106 |
81.3 |
77.4 |
115 |
103 |
103 |
79.2 |
100 |
111 |
93 |
103 |
117 |
90.8 |
103 |
82 |
106 |
90.8 |
101 |
95.9 |
94.6 |
100 |
89.4 |
104 |
107 |
117 |
101 |
107 |
104 |
111 |
107 |
109 |
109 |
103 |
92.4 |
100 |
95.5 |
111 |
120 |
88.3 |
102 |
94.3 |
84.7 |
94.6 |
95 |
84.8 |
94.1 |
100 |
110 |
101 |
109 |
120 |
106 |
83.2 |
107 |
87.2 |
109 |
88.2 |
114 |
97.4 |
81.4 |
104 |
98.5 |
108 |
105 |
119 |
107 |
98.7 |
91.8 |
88.8 |
108 |
98.9 |
108 |
91.4 |
84.4 |
111 |
87.8 |
110 |
101 |
89.7 |
105 |
106 |
99 |
96.4 |
116 |
113 |
119 |
96.9 |
104 |
95.8 |
104 |
93.6 |
101 |
94 |
85.8 |
99.7 |
95 |
111 |
87.6 |
102 |
94.1 |
122 |
84.1 |
94 |
81.9 |
114 |
101 |
98.2 |
92.8 |
104 |
105 |
103 |
101 |
101 |
94.7 |
87.6 |
92.5 |
95.1 |
92.5 |
103 |
86.4 |
105 |
96.1 |
89.2 |
97.6 |
80.8 |
110 |
99.7 |
95.1 |
117 |
89.3 |
103 |
85.4 |
86.9 |
81.7 |
93.9 |
89.5 |
93.2 |
109 |
116 |
97.1 |
88 |
79.1 |
84.4 |
102 |
97.4 |
109 |
108 |
106 |
97.2 |
92.6 |
113 |
101 |
108 |
103 |
102 |
98.3 |
96.2 |
94.7 |
91.3 |
105 |
105 |
103 |
67.8 |
95.8 |
100 |
116 |
97.9 |
102 |
94.7 |
117 |
106 |
92.6 |
113 |
93 |
85.7 |
108 |
94.7 |
95.6 |
105 |
107 |
110 |
97.9 |
97.9 |
103 |
88.3 |
118 |
110 |
110 |
97.4 |
96.2 |
108 |
124 |
89.6 |
96.8 |
118 |
102 |
129 |
109 |
90 |
110 |
111 |
91.5 |
105 |
98.1 |
99.5 |
126 |
102 |
87.6 |
114 |
111 |
88.6 |
91.6 |
105 |
83.5 |
110 |
109 |
94.1 |
96 |
85.9 |
76.3 |
101 |
103 |
91.2 |
109 |
107 |
75.5 |
95.9 |
115 |
112 |
101 |
109 |
104 |
95.7 |
95.5 |
111 |
97.1 |
117 |
94.3 |
114 |
97.9 |
108 |
89.3 |
92.3 |
94.1 |
103 |
100 |
96.2 |
85.1 |
99.7 |
102 |
94.4 |
93.2 |
108 |
116 |
99.4 |
115 |
93.9 |
105 |
95.9 |
97.5 |
98.4 |
92.9 |
98.7 |
109 |
88 |
107 |
99.4 |
96.7 |
79.9 |
93.4 |
114 |
90.4 |
88.5 |
108 |
95.4 |
118 |
88.7 |
102 |
101 |
88.6 |
103 |
97.9 |
101 |
99.8 |
101 |
110 |
97.5 |
114 |
82.4 |
97.3 |
91.5 |
87.6 |
83.1 |
85 |
113 |
99.7 |
99.9 |
86.3 |
88.7 |
105 |
93.3 |
92.3 |
97.6 |
102 |
98.9 |
93.7 |
113 |
101 |
99.8 |
102 |
89.4 |
89.3 |
123 |
94.2 |
121 |
99.5 |
101 |
109 |
81 |
115 |
91.8 |
91.1 |
104 |
103 |
105 |
94.4 |
99.7 |
111 |
116 |
116 |
104 |
87.5 |
96.1 |
97.4 |
102 |
96.9 |
101 |
98.2 |
102 |
105 |
99.3 |
118 |
99.1 |
103 |
96.1 |
115 |
103 |
97.8 |
113 |
97.2 |
99.2 |
94.8 |
102 |
86.1 |
107 |
118 |
108 |
102 |
94 |
99 |
92.5 |
88.9 |
102 |
93.5 |
98.3 |
116 |
93.4 |
113 |
105 |
117 |
105 |
97.3 |
104 |
100 |
105 |
85.6 |
87.6 |
109 |
93.2 |
84.8 |
79.4 |
108 |
96.4 |
124 |
89.7 |
93.7 |
88.1 |
115 |
96.4 |
101 |
99.3 |
85.4 |
117 |
108 |
101 |
116 |
103 |
108 |
95.9 |
117 |
93 |
99.4 |
87.4 |
73 |
104 |
103 |
105 |
84.3 |
106 |
99.1 |
107 |
111 |
90.3 |
100 |
112 |
97.5 |
103 |
102 |
97.5 |
107 |
107 |
101 |
105 |
95.8 |
103 |
96.2 |
113 |
113 |
95.2 |
111 |
101 |
105 |
86.6 |
105 |
111 |
104 |
83.3 |
111 |
92.1 |
109 |
107 |
115 |
123 |
100 |
106 |
97.5 |
106 |
86.5 |
112 |
103 |
112 |
126 |
102 |
85.6 |
109 |
91.8 |
111 |
113 |
97.5 |
97.7 |
91.6 |
108 |
117 |
107 |
98.4 |
80.5 |
105 |
105 |
91.3 |
87.4 |
104 |
101 |
104 |
115 |
106 |
91.7 |
105 |
104 |
80.6 |
112 |
107 |
108 |
84.9 |
92.8 |
118 |
98 |
88.7 |
106 |
94.8 |
104 |
89.5 |
82.6 |
114 |
94.7 |
94.9 |
114 |
91.4 |
93.2 |
105 |
101 |
93.7 |
115 |
114 |
92.3 |
106 |
98.9 |
89.9 |
102 |
116 |
91.3 |
116 |
100 |
99.6 |
95.5 |
79.4 |
104 |
103 |
96.6 |
96.3 |
87.5 |
100 |
86.5 |
94.1 |
98.1 |
128 |
83.4 |
99.9 |
101 |
91 |
107 |
82.6 |
94.7 |
94.3 |
101 |
101 |
114 |
102 |
95.9 |
95.9 |
101 |
91.3 |
92.3 |
105 |
101 |
94.6 |
96.1 |
99.9 |
101 |
98.1 |
101 |
104 |
100 |
102 |
92 |
97.1 |
108 |
96.3 |
100 |
103 |
112 |
101 |
96.4 |
113 |
92.8 |
97.5 |
89 |
94.4 |
105 |
117 |
102 |
115 |
105 |
91.5 |
97.3 |
88 |
115 |
86.1 |
108 |
107 |
100 |
96.5 |
110 |
93.2 |
99.4 |
86.2 |
105 |
93.8 |
88.7 |
98.6 |
106 |
109 |
100 |
90.9 |
94.1 |
91.8 |
98.9 |
91.4 |
99 |
97.9 |
102 |
101 |
105 |
105 |
101 |
105 |
124 |
109 |
102 |
98.8 |
110 |
88.6 |
102 |
102 |
105 |
92.4 |
87.1 |
96.3 |
96.2 |
97.6 |
93.3 |
102 |
97.7 |
102 |
104 |
117 |
102 |
103 |
107 |
101 |
104 |
114 |
93.2 |
75.2 |
118 |
103 |
78.9 |
106 |
92.3 |
85.3 |
91.6 |
111 |
109 |
91.4 |
123 |
103 |
95 |
115 |
106 |
102 |
102 |
118 |
116 |
95.8 |
94.9 |
95.7 |
89.5 |
106 |
94.8 |
117 |
90.6 |
98.4 |
96.3 |
99.8 |
92 |
96.5 |
95.2 |
101 |
80.9 |
109 |
97.9 |
90.3 |
113 |
88.9 |
95.8 |
77.7 |
95.2 |
85.4 |
103 |
106 |
117 |
113 |
124 |
96.8 |
109 |
103 |
94.2 |
82.9 |
87.9 |
99.2 |
116 |
98.3 |
85.3 |
88.9 |
119 |
87 |
119 |
103 |
108 |
95.8 |
102 |
93.4 |
97.5 |
96.1 |
102 |
100 |
101 |
80.5 |
102 |
97.4 |
104 |
99.5 |
105 |
110 |
120 |
99.7 |
86.1 |
92.2 |
113 |
95.8 |
80.9 |
106 |
91.6 |
87.1 |
94.8 |
111 |
101 |
109 |
97.5 |
96.7 |
99.1 |
115 |
98.4 |
99.6 |
100 |
92.5 |
106 |
132 |
110 |
108 |
89.9 |
92.5 |
103 |
121 |
91.3 |
117 |
96.9 |
112 |
87.8 |
95.2 |
118 |
99.5 |
106 |
108 |
104 |
95.8 |
87.8 |
105 |
80.3 |
96.6 |
117 |
105 |
107 |
99.7 |
103 |
88.2 |
99.6 |
98.2 |
85.6 |
90.8 |
102 |
109 |
110 |
109 |
111 |
98.2 |
116 |
90.4 |
98.7 |
107 |
88.8 |
97.4 |
112 |
112 |
95.1 |
88.6 |
99 |
81.3 |
111 |
110 |
119 |
102 |
93.3 |
102 |
114 |
115 |
94.3 |
104 |
91.4 |
95.4 |
104 |
103 |
114 |
109 |
112 |
101 |
91.4 |
105 |
115 |
83 |
109 |
110 |
92.2 |
103 |
105 |
87.7 |
117 |
91.1 |
74.9 |
100 |
86.8 |
100 |
88.1 |
93.8 |
102 |
103 |
118 |
94.4 |
108 |
97.7 |
84.4 |
95.5 |
125 |
104 |
92.8 |
91.1 |
89.3 |
99.3 |
92.5 |
87.9 |
108 |
88.8 |
112 |
98.7 |
99.3 |
103 |
108 |
96 |
87.4 |
116 |
105 |
95.9 |
85.9 |
81.8 |
106 |
92.7 |
80.4 |
102 |
99.3 |
79.4 |
106 |
105 |
102 |
105 |
111 |
100 |
98.9 |
98.3 |
99.3 |
98.6 |
74 |
102 |
121 |
95.9 |
102 |
88 |
89.3 |
94 |
102 |
100 |
93.9 |
103 |
100 |
104 |
106 |
90.7 |
132 |
99 |
88 |
101 |
105 |
101 |
95 |
98.8 |
116 |
116 |
91 |
95.2 |
101 |
92.3 |
102 |
117 |
98.4 |
99.9 |
89.7 |
111 |
104 |
104 |
108 |
94.4 |
106 |
117 |
118 |
108 |
117 |
116 |
104 |
102 |
98.3 |
88.3 |
91.8 |
112 |
98 |
94 |
100 |
90.6 |
96.1 |
102 |
105 |
85.9 |
88.7 |
93.8 |
88.9 |
94.1 |
105 |
77.9 |
95.5 |
107 |
95.3 |
91.8 |
110 |
101 |
80.3 |
109 |
108 |
107 |
114 |
97.3 |
108 |
92.6 |
95.9 |
112 |
93.3 |
103 |
111 |
108 |
97 |
99.8 |
107 |
110 |
103 |
89.4 |
101 |
90.3 |
89.7 |
100 |
89.4 |
97.7 |
100 |
93.4 |
98.2 |
85.4 |
86.4 |
104 |
120 |
103 |
88.7 |
104 |
94.6 |
102 |
106 |
107 |
106 |
101 |
91.5 |
96.2 |
104 |
109 |
98.6 |
95 |
101 |
111 |
121 |
117 |
107 |
111 |
106 |
118 |
108 |
95.8 |
115 |
110 |
102 |
111 |
101 |
106 |
92.2 |
113 |
93 |
97.1 |
92.5 |
97.1 |
87 |
104 |
100 |
95.1 |
113 |
102 |
96 |
111 |
99.7 |
92.7 |
97.9 |
95.1 |
109 |
101 |
92.7 |
114 |
101 |
97.8 |
95.3 |
127 |
108 |
99.9 |
78.8 |
101 |
94.6 |
77.7 |
86.7 |
115 |
100 |
111 |
122 |
96.2 |
107 |
90 |
106 |
111 |
104 |
117 |
105 |
92.9 |
87.6 |
89.7 |
115 |
107 |
103 |
86.3 |
98.1 |
103 |
116 |
118 |
102 |
100 |
94.3 |
92.4 |
117 |
117 |
88.4 |
116 |
113 |
82.1 |
95.9 |
91.9 |
95.7 |
111 |
104 |
104 |
113 |
81.3 |
92 |
106 |
103 |
91.1 |
98.8 |
91.6 |
101 |
86.3 |
104 |
88.9 |
107 |
88.9 |
87.8 |
101 |
91.8 |
92 |
102 |
82.5 |
83.6 |
105 |
97.6 |
101 |
109 |
93.9 |
87.9 |
92.4 |
91.3 |
106 |
113 |
95.3 |
109 |
96.7 |
116 |
105 |
103 |
108 |
84.3 |
94.2 |
117 |
97.5 |
113 |
97.6 |
95.7 |
99.6 |
103 |
103 |
121 |
104 |
97.3 |
88.7 |
101 |
95.3 |
109 |
97.1 |
112 |
114 |
119 |
111 |
116 |
132 |
105 |
99.5 |
101 |
96.7 |
97.9 |
105 |
110 |
102 |
87.3 |
91.7 |
82.1 |
93.4 |
97.5 |
98 |
119 |
96.1 |
85.6 |
95.1 |
84.1 |
95.5 |
92.8 |
86.3 |
89.7 |
117 |
107 |
106 |
117 |
89.5 |
93.6 |
91.4 |
90.9 |
94.2 |
104 |
78 |
101 |
107 |
108 |
124 |
109 |
92.8 |
99 |
99.4 |
106 |
91.8 |
113 |
104 |
118 |
102 |
118 |
94.5 |
104 |
85.3 |
110 |
75.6 |
102 |
99.7 |
113 |
75.1 |
97 |
107 |
115 |
125 |
102 |
79.4 |
102 |
106 |
114 |
100 |
97.8 |
99.2 |
97 |
89.6 |
99.9 |
113 |
111 |
90 |
107 |
91 |
89.8 |
105 |
109 |
85.2 |
82.1 |
95.7 |
102 |
88.4 |
99.8 |
106 |
95.8 |
85.9 |
96.8 |
118 |
114 |
115 |
93.7 |
86.4 |
111 |
97.2 |
88.8 |
96.8 |
95.4 |
97.8 |
107 |
97 |
103 |
99.7 |
108 |
104 |
108 |
98.1 |
95.6 |
101 |
97.1 |
91.9 |
105 |
106 |
88.2 |
89.8 |
96.9 |
112 |
94 |
107 |
108 |
115 |
88.5 |
113 |
123 |
library(ggplot2)
ggplot(dfa, aes(a))+
geom_density(fill="blue")+
geom_density(dfb, mapping=aes(b,fill="red", alpha=.5 ))+
theme(legend.position = "none") +
geom_vline(aes(xintercept = 100, colour="red"))
El rango son los valores mínimo y valor máximo de un conjunto de datos. Se usa la función range(). Usamos los dos conjuntos de datos ya creado anteriormente para visualizar los rangos de la distribuciones de los gráficos. Lo que uno observa es que el valor mínimo del primer conjunto de datos es 59.17 y el máximo es 137.12. Para el segundo conjunto de datos el valor mínimo es 1.86 y el máximo es 203.88.
## [1] 67.77126 133.87095
## [1] -80.68499 251.11763
## [1] 57 50 43 39 54 50 59 49 57 51 43 47
Edad |
---|
57 |
50 |
43 |
39 |
54 |
50 |
59 |
49 |
57 |
51 |
43 |
47 |
## [1] 39 59
## [1] 39 59
Dist_V=c(14, 71, 16, 43, 32, 17.1, 11, 53, 16.2, 47, 18.2, 39, 9, 16.2)
df=data.frame(Dist_V) # para poner los datos un un data frame
df
Dist_V |
---|
14 |
71 |
16 |
43 |
32 |
17.1 |
11 |
53 |
16.2 |
47 |
18.2 |
39 |
9 |
16.2 |
Caluclar la varianza
## [1] 359.3963
Desviación estandard
## [1] 18.95775
Error estandard
## [1] 5.066672
95% de la distribución
Limite_inferior_a=mean(df$Dist_V)-(error_e*1.96)
Limite_superior_a=mean(df$Dist_V)+(error_e*1.96)
Limite_inferior_a
## [1] 18.83361
## [1] 38.69496
Los pasos para calcular la varianza son los siguientes
\[{ s }^{ 2 }=\frac { \sum { { ({ x }_{ i }-\bar { x } })^{ 2 } } }{ n-1 }=\frac{SS}{n-1}\]
Data |
---|
1 |
2 |
3 |
4 |
5 |
6 |
Data | mean_Data |
---|---|
1 | 3.5 |
2 | 3.5 |
3 | 3.5 |
4 | 3.5 |
5 | 3.5 |
6 | 3.5 |
Data_df$Diff=Data_df$Data-Data_df$mean_Data
# Calcular la diferencia entre el promedio y el valor x
sum(Data_df$Diff) # si los valores no se cuadra la suma sera zero.
## [1] 0
Data | mean_Data | Diff | SS |
---|---|---|---|
1 | 3.5 | -2.5 | 6.25 |
2 | 3.5 | -1.5 | 2.25 |
3 | 3.5 | -0.5 | 0.25 |
4 | 3.5 | 0.5 | 0.25 |
5 | 3.5 | 1.5 | 2.25 |
6 | 3.5 | 2.5 | 6.25 |
## [1] 17.5
### Este indice se llama la desviación del promedio que es la suma de los cuadrados
Ahora la manera fácil de hacer los análisis, usar la función var, y no hay que hacer ninguno de los pasos anteriores. Pero es importante que sepa como es el procedimiento de calcular la varianza. Nota que la varianza es un indice de la diferencia entre el promedio y cada valor. El otro paso es que los valores tienen que estar cuadrada las diferencias sino la suma sera de cero. Se usa el variancas cuando tenemos confianzas que los datos provienen de una distribución normal y que los datos que uno tiene no están sesgados.
## [1] 3.5
La varianza es un indice que no esta en la misma unidad que los valores recolectado, por ejemplo si se recolecta los datos en centímetros, la varianza es en centímetros cuadrados. Por consecuencia no es necesariamente el mejor para describir la dispersión. Entonces hay que sacar la raíz cuadra de la varianza. La desviación estándar es un indice que se usa para describir la dispersión de una población, en otra palabra cuan diferentes son los datos uno del otro. Se usa el desviación estándar cuando tenemos confianzas que los datos provienen de una distribución normal y que los datos que uno tiene no están sesgados.
\[{ s }=\sqrt { \frac { \sum { { ({ x }_{ i }-\bar { x } })^{ 2 } } }{ n-1 } }\] o más sencillo
\[s=\sqrt{s^2}\]
la función sd, “standard deviation” es sumamente facil de calcular en R.
## [1] 1.870829
La función básica es quantile si lo dejamos sin más instrucción calcula los siguientes probabilidades 0%, 25%, 50% (mediana), 75%, 100%. Pero si uno quiere los valores que se encuentra en una posición especifica hay que usar type =1 como se ve en el segundo ejemplo. Hay 9 tipos de cuantiles con esta función, estos se encuentra definido en RStudio. Añade quantile en el artea de help y vera las otras alternativas.
## 0% 25% 50% 75% 100%
## 1.00 2.25 3.50 4.75 6.00
## 2.5% 25% 50% 75% 97.5%
## 1.125 2.250 3.500 4.750 5.875
Para explicar estos conceptos mejor visualizamos los datos
i | x[i] | Mediana | Cuartiles |
---|---|---|---|
1 | 03 | ||
2 | 19 | ||
3 | 27 | ||
4 | 33 | Q1=33 | |
5 | 52 | ||
6 | 60 | ||
7 | 77 | ||
8 | 87 | Q2=87 | |
9 | 99 | ||
10 | 101 | ||
11 | 122 | ||
12 | 137 | Q3=137 | |
13 | 140 | ||
14 | 142 | ||
15 | 150 |
Ahora usamos la función quantile con el type=1 de calcular los cuartiles y ver si tenemos los mismos resultados.
## 0% 25% 50% 75% 100%
## 3 33 87 137 150
## [1] 49.2145
El termino correcto es el error de las desviación estándar pero típicamente acortado a error estándar. El indice de error estándar es para describir cual es la posible dispersión del promedio. En otra palabra cuan confiado estamos con el estimado del promedio. Más grande el error estándar menos confiado estamos con el promedio. Se usa el error estándar cuando tenemos confianzas que los datos provienen de una distribución normal y que los datos que uno tiene no están sesgados.
La formula de error estándar es la siguiente usando la desviación estándar
\[s_{\overline{x}}=\frac{s}{\sqrt{n}}\]
o usando la varianza, donde la n es la cantidad de datos
\[s_{\overline{x}}=\sqrt{\frac{s^2}{n}}\]
Ahora si usamos los datos enseñado al principio del modulo. Calculamos error estándar de ambas distribución. er= error estándar. No hay función en R para calcular el error estándar, por consecuencia hay que crear la formula para calcular el indice. Vemos que cuando hay más dispersión el error estándar es más grande.
## [1] 5000
## [1] 0.1405601
## [1] 2.204251
Ya que hemos calculado el error estándar podemos calcular la dispersión de los promedios. Esto quiere decir que si uno repite la recolección de datos el promedio tiene un 95% de probabilidad estar en este rango. Uno calcula los limites de la dispersión de los promedios usando la siguientes formulas.
\[Limite\ 95\%\ ariba=\ \overline{x}\ +\left(ES\ \cdot\ 1.96\right)\]
\[Limite\ 95\%\ abajo=\ \overline{x}\ -\left(ES\ \cdot\ 1.96\right)\]
Limite_inferior_a=mean(dfa$a)-(es_a*1.96)
Limite_superior_a=mean(dfa$a)+(es_a*1.96)
Limite_inferior_a # limite inferior 95%
## [1] 99.73334
## [1] 100.0088
## [1] 100.2843
Limite_inferior_b=mean(dfb$b)-(es_b*1.96)
Limite_superior_b=mean(dfb$b)+(es_b*1.96)
mean_b=mean(dfb$b)
Limite_inferior_b
## [1] 94.81576
## [1] 99.13609
## [1] 103.4564
Visualizando el intervalos de confianza del promedio. Lo que uno observa es que primero el promedio puede ser en localidad diferentes porque el conjunto de datos fue menos en el segundo gráfico. Además vemos que el intervalo de 95% de confianza del promedio en el segundo es más amplio.
CI_a1=ggplot(dfa, aes(a))+
geom_histogram(fill="blue", colour="white",alpha=.5, binwidth = 2)+
theme(legend.position = "none") +
geom_vline(aes(xintercept = 100), colour="red")+
geom_vline(aes(xintercept = Limite_inferior_a), colour="black")+
geom_vline(aes(xintercept = Limite_superior_a), colour="black")
ggsave("Graficos/CI_a1.png")
CI_b=ggplot(dfb, aes(b))+
geom_histogram(fill="blue", colour="white", alpha=.5, binwidth = 5)+
theme(legend.position = "none") +
geom_vline(aes(xintercept =mean_b), colour="red")+
geom_vline(aes(xintercept = Limite_inferior_b), colour="black")+
geom_vline(aes(xintercept = Limite_superior_b), colour="black")
ggsave("Graficos/CI_b.png")
Para tener una idea de la distribución de los datos y cual es el porcentaje de valores que esté incluido (asumiendo una distribución normal). Podemos crear un gráfico que demuestra el porcentaje incluidos basado en la desviación estándar. Nota aquí no es la dispersión del promedio pero la dispersión de los datos en la población.
Cálculos el promedio y la desviación estándar de los datos. Lo haremos por genero. Si uno calcula el rango de promedio ± 1 sd, esto incluye 68.2% de los datos, si incluimos el promedio ± 2 sd incluye 95.6% de los datos,
sd | rango inluido |
---|---|
0 | el promedio |
±1 | 68.2% |
±2 | 95.6% |
±3 | 99.7% |
±4 | 99.99% |
Comenzamos con evaluar el intervalo de confianza de los datos con datos teóricos. Por ejemplo el nivel de colesterol en el plasma varia en los humanos. En el siguiente articulo Plasma total cholesterol level and some related factors in northern Iranian people. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783780/
Usamos los datos para las mujeres con un promedio de 196.7 y una desviación estándar de 39.11. Con estos datos asumimos que esto provienen de una distribución normal y que representa las mujeres en resto del mundo.
# Creamos un conjunto de datos para los análisis
Col=rnorm(200000, 196.7, 39.11)
Col=data.frame(Col)
promCol=Col%>%
summarise(Mean=mean(Col))
sdCol=Col%>%
summarise(sd=sd(Col))
Visualizar los datos: Uds conoce su nivel de colesterol total? Donde se encuentra en esta distribución? Se encuentra en el 68%? Nota que la suma de todos los porcentaje es igual a 100%.
library(grid)
library(gtable)
lims <- c(28, 350)
breaks.major2<-c(0, 79, 118, 157,
197, 235, 274, 314)
breaks.minor2= c(79, 118, 157,197,
235, 274, 314,379)
breaks.comb <- sort(c(breaks.major2, breaks.minor2-1.0E-6))
labels.comb<- c(0, 79, "\n-3sd", 118, "\n-2sd", 157, "\n-1sd", 197, "\npromedio",
235, "\n+1sd",274, "\n+2sd", 314,"\n+3sd", 379)
Colesterol_Inter=Col%>%
ggplot(aes(Col))+
geom_histogram(fill="blue", colour="white",alpha=.5, binwidth = 5)+
theme(legend.position = "none")+
geom_vline(xintercept=as.numeric(promCol), colour="black")+
geom_vline(aes(xintercept = as.numeric(promCol-sdCol)), colour="blue")+
geom_vline(aes(xintercept = as.numeric(promCol+sdCol)), colour="blue")+
geom_vline(aes(xintercept = as.numeric(promCol-2*sdCol)), colour="red")+
geom_vline(aes(xintercept = as.numeric(promCol+2*sdCol)), colour="red")+
geom_vline(aes(xintercept = as.numeric(promCol-3*sdCol)), colour="orange")+
geom_vline(aes(xintercept = as.numeric(promCol+3*sdCol)), colour="orange")+
scale_x_continuous(expand=c(0,0), limit=lims,
minor_breaks=breaks.minor2,
breaks=breaks.comb,
labels=labels.comb)+
xlab("Nivel de colesterol")+
annotate("text", x=180, y = .004, label="34.1%")+
annotate("text", x=210, y = .004, label="34.1%")+
annotate("text", x=140, y = .002, label="13.6%")+
annotate("text", x=250, y = .002, label="13.6%")+
annotate("text", x=90, y = .001, label="2.1%")+
annotate("text", x=295, y = .001, label="2.1%")+
annotate("text", x=70, y = .0005, label="0.1%")+
annotate("text", x=330, y = .0005, label="0.1%")
Colesterol_Inter
Para evaluar el 95% de intervalo de confianza usaremos datos de la alturas de 500 adultos. Estos datos fueron bajado del siguiente website. Están disponible en debajo la pestaña de “Los Datos”. https://www.kaggle.com/yersever/500-person-gender-height-weight-bodymassindex/data
library(readr)
library(gt)
Alturas_Humanos <- read_csv("Data_files_csv/Alturas_Humanos.csv")
gt(head(Alturas_Humanos))
Genero | Altura_cm | Peso_kg |
---|---|---|
Hombres | 174 | 96 |
Hombres | 189 | 87 |
Mujer | 185 | 110 |
Mujer | 195 | 104 |
Hombres | 149 | 61 |
Hombres | 189 | 104 |
Calculamos los promedios y las desviación estándar para añadirlos al gráfico
Genero | Altura_cm | Peso_kg |
---|---|---|
Hombres | 174 | 96 |
Hombres | 189 | 87 |
Mujer | 185 | 110 |
Mujer | 195 | 104 |
Hombres | 149 | 61 |
Hombres | 189 | 104 |
## [1] 500
# Parametros para las Mujeres
promM=Alturas_Humanos%>%
dplyr::select(Genero, Altura_cm)%>%
filter(Genero=="Mujer")%>%
summarise(MeanM=mean(Altura_cm))
promM
MeanM |
---|
170 |
sdM=Alturas_Humanos%>%
dplyr::select(Genero, Altura_cm)%>%
filter(Genero=="Mujer")%>%
summarise(sd=sd(Altura_cm))
sdM
sd |
---|
15.7 |
# Parametros para las Hombres
promH=Alturas_Humanos%>%
dplyr::select(Genero, Altura_cm)%>%
filter(Genero=="Hombres")%>%
summarise(Mean=mean(Altura_cm))
sdH=Alturas_Humanos%>%
dplyr::select(Genero, Altura_cm)%>%
filter(Genero=="Hombres")%>%
summarise(sd=sd(Altura_cm))
Aquí el gráfico de la distribución de los datos con un histograma, y promedio (negro), el rango de 68% entre las barras azules y el de 95% entre las barras roja.
Alturas_Mujer=Alturas_Humanos%>%
dplyr::select(Genero, Altura_cm)%>%
filter(Genero=="Mujer")%>%
ggplot(aes(Altura_cm))+
geom_histogram(fill="blue", colour="yellow",alpha=.5)+
theme(legend.position = "none")+
geom_vline(xintercept=as.numeric(promM), colour="black")+
geom_vline(aes(xintercept = as.numeric(promM-sdM)), colour="blue", size=1)+
geom_vline(aes(xintercept = as.numeric(promM+sdM)), colour="blue")+
geom_vline(aes(xintercept = as.numeric(promM-2*sdM)), colour="red")+
geom_vline(aes(xintercept = as.numeric(promM+2*sdM)), colour="red")
ggsave("Graficos/Alturas_Mujer.jpeg") # .png, .tiff, etc
The tallest building in the world, el numero de pisos
88, 88, 110, 88, 80, 69, 102, 78, 70, 55, 79, 85, 80, 100, 60, 90, 77, 55, 75, 55, 54, 60, 75, 64, 105, 56, 71, 70, 65, 72